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SUMMARY The use of survival analysis in cardiac surgical reports has been widely accepted in order to
characterise and compare performances of different valve prostheses. However, the analyses that have
been described elsewhere may be improved in several respects. The original method proposed for
prosthetic valve evaluation examined follow-up related to patients rather than the valves themselves
and therefore neglected the possibility of factors other than the valve itself which could affect the fate
of cardiac patients. Furthermore, there has not yet been any application of life table methods to
compare two different sets of data, or to estimate the average time before an event occurs.

The present work defines valve function and malfunction and separates patient survival from valve
performance. We define statistical indices, namely the median remaining lifetime and the instantaneous
decrement rate. Both indices can be useful; the former measures the average survival time and the
latter focuses attention on the intensity of risk changes. Using established statistical theory we calculate
the significance level of difference between two independent survival rates. We qualify the presentation
of probabilities with a statement of the associated standard errors.

Statistical analysis based on the life table has been
proposed as an objective method for the evaluation
of long-term results in cardiac surgery (Anderson
et al., 1974; Grunkemeier et al., 1975). This method
offers an accurate and simple means for estimating
the prognosis of patients with chronic disease. The
method has been used for many years to determine
survival rates of cancer victims. Several authors have
provided comprehensive descriptions (Berkson
and Gage, 1950; Merrell and Shulman, 1955;
Cutler and Ederer, 1958; Axtell, 1963). The ap-
proach was called the 'actuarial method' by Berkson
and Gage (1950) who used a formula first proposed
by Frost (1933), recognising that it had been widely
used by actuaries since the 19th century as an
application of the theory of 'multiple decrements'
(Benjamin and Haycocks, 1970). Consideration of
these problems first started with Daniel Bernoulli's
discussion of the smallpox inoculation problem
which is reviewed by Karn (1931).

Calculation of patient survival

We shall consider the application of actuarial
analysis to follow-up studies where the population
under investigation has undergone a valve opera-
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tion. We shall define patient survival and valve
performance to be separate entities. Firstly, we shall
discuss the method for assessing patient survival,
and then extend the results, in a later section, to
assessing valve performance.

In measuring the proportion of patients alive n
years (say, n= 5) after the operation, an important
advantage of the actuarial method is that it uses all
the information collected up to the time of analysis
(that is the closing date of the study). Thus, one
need not restrict one's attention to only those per-
sons whose operation occurred more than five years
before the closing date. Those entering four, three,
two, and one year earlier contribute much relevant
information to the evaluation of the probability of
surviving five years. This extra informatior is
utilised by pooling the data from groups of patients
entering the study at different times.
The increased precision in estimating survival

probabilities has been documented (Merrell and
Shulman, 1955; Cutler and Ederer, 1958). This
advantage is particularly relevant to surgical studies
where the bulk of experience is concentrated at the
earliest durations though the surgeon may be par-
ticularly interested in results at the longest duration
after the operation.
At the closing date of such a follow-up study,

patients are likely to have been observed for varying
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lengths of time, some having had the operation a
long time previously, others more recently. Some
patients will have died, the time of death being
usually known accurately (with other end points,
for example the occurrence of valve complications,
the precise time of the event may not be known).
Other patients are known to be alive, and would have
survived further had the study been extended.
Some may have been lost to follow-up for various
reasons between successive examinations. Others
may have been removed from the study for medical
reasons (perhaps by the intervention of another
disease or death from a different cause).
These last three groups, viz. (a) those who would

have continued had not the closing date of the study
intervened; (b) those who have been lost to follow-
up; and (c) those who have been removed from the
study, create a common category called 'with-
drawals'. The combined group is of prime im-
portance since it is usually part of the data, and it
is this which makes the actuarial method of proba-
bility calculation necessary. If there were no with-
drawals and each patient was observed until their
time of death, the calculation of survival probabili-
ties at different times after operation would be
simple. Thus, the n year probability of surviving
would be the same as the proportion of patients
with survival times greater than n. The problems
would be reduced to ascertaining the distribution of
survival times.
The mathematics of the actuarial method are not

very difficult but it is not necessary for clinicians to
understand the theory which is well established.
This is set out in Appendix I.

Previous cardiac surgical reports which have dis-
cussed the use of the actuarial method have not
considered the problem of comparing two sets of
survival data. We present in Appendix I a method
for testing how statistically significant is the
difference between two independent sets of data.

In addition we introduce the instantaneous
probability of dying which characterises the
change in the intensity of risk, and is very useful for
drawing attention to points where there is a
dramatic change in experience. We also introduce
the median remaining life-time which measures the
average survival time.

These techniques are described in detail in
Appendix I in terms of patient survival. However,
they may also be used for measuring valve per-
formance, and will be mentioned in the following
sections.

Calculation of valve performance

When introducing the actuarial method to cardiac

surgery, Anderson et al. (1974) proposed the assess-
ment of patient survival after the insertion of a given
prosthetic valve. They assumed that postoperative
survival and/or complication-free survival was pre-
determined by the quality of the given valve pros-
thesis. Though such an assumption is reasonable
when the main risk factor during the whole follow-
up period is the valve, it neglects the possibility of
an excellent prosthesis when the fate of patients will
be determined by factors other than the prosthesis
itself. Moreover, the method of constructing the life
tables for cardiac surgical patients has been designed
to assess follow-up not on a condition, such as a
valve, but on the carrier of that condition, the
patient. Thus, the straightforward interpretation of
data on patient follow-up as a characteristic of valve
performance can be misleading. Nevertheless,
patient survival and valve performance can be
separated, and given independent consideration.
The risk attributed to biological, prosthetic, or

bioprosthetic cardiac valves is caused by one or
more of five main malfunction categories as follows:
(1) Mechanical malfunction. Stenosis and/or regur-

gitation, as defined in the NYHA definition of
cardiac anomalies, and irrespective of the patho-
morphology of stenosis and regurgitation in-
volving paravalvar leaks, or a haemodynamically
significant gradient across an otherwise well-
functioning prosthetic or bioprosthetic valve.

(2) Infection. Involvement of the valve in septic
conditions, described as acute or subacute endo-
carditis by the NYHA definition.

(3) Thrombotic apposition on valve surface with
or without consecutive embolism. Embolism in
the relevant side of the circulation with or with-
out thrombotic apposition on the valve.

(4) Pathological bleeding caused by anticoagulation
resulting from prosthetic valve.

(5) Haemolysis. Clinically manifest haemolysis in
the presence of a given valve and without
coexisting haematological disease.

In terms of actuarial analysis any valve can be
free offatal malfunction, that is the patient is either
alive or dead and the death is neither caused by nor
accompanied by any of the above mentioned five
conditions. Next, the valve can be functioning until
the cessation offunction, which means either until a
valve-related death or the removal of the valve and
its replacement by another cardiac prosthesis.
Finally the valve can function without complications
corresponding to the criterion that none of the above
mentioned five conditions has yet occurred (Fig. 1).

Thus, the meaning of complication is both cumu-
lative and comprehensive involving all of the pos-
sible malfunctions attributed to the given valve.

Actuarial analysis can be adapted to the analysis
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Fig. 1 Freeze dried homograft
valves. Probability of valve
related death and valve function
without complication
(cumulative).

of non-fatal events (for example, complications), by
considering such events as terminal, that is by
treating the experience which individuals or valves
contribute to the study, in the same way as death is
treated in Appendix I.
When assessing valve performance, the with-

drawal category will comprise the following three
groups of valves, viz.
(a) Those which would have continued had not the

closing date of the study intervened.
(b) Those which have been lost to follow-up.
(c) Those who die and the cause is either not

related to the valve or is unknown.
The life tables for assessing valve performance

are constructed in an analogous way to that de-
scribed in Appendix I for patients and in Appendix
II we present a worked example. For convenience,
in the definitions below, we use terms like 'death' or

'loss' to refer to valves, even though it is the patient
who dies or who is lost.

Consider the interval between x and x +1 years
after the operation.

Let L. be the number of originally inserted valves
functioning at the beginning of the interval.

Let D. be the number of deaths, caused by or

accompanied by any of the above five malfunc-
tions, occurring in the interval.
Let W. be the number of valves withdrawn

during the interval.
Let R. be the number of valves removed at

successful re-operation during the interval.
Let C. be the number of valve complications in-

volving neither death nor reoperation during the
interval.
Then L.+ =L.-D.+W.+Rx+Cx) and a life

table may be constructed.
Three different survival curves will be derived

relating to free of fatal malfunction, free of mal-
function, and free of complication. These will be
considered in turn.

FREE OF FATAL MALFUNCTION

Let E.d be the number of valves exposed to the
risk of death caused or accompanied by any of the

five malfunctions during the interval.
Then E.d is not equivalent to L. since the with-

drawals, removals, and complications who have not
completed the interval of observation under con-

sideration must not be credited with having done so.

In order to reach an expression for E.d, we shall
assume that these valves withdrawing (Wx), re-

operated (R.), or experiencing complications (CG)
in the interval x to x+ 1 are exposed to the risk of
dying from a valve related cause for half the interval,
so that
Exd=Lx. (Wx+Rx+Cx).
The actuarial estimate of the probability of a

valve related death in the interval x to x+1 for a

valve alive and functioning at x is qxd where

Dx
qxd= d

Given qxd, formulae may be set up, as in Ap-
pendix I, for P.d, cumulative probability of sur-

viving free of a valve related death from o to x;

Vx+ id, the instantaneous valve related death rate at
x+J; mxd, the median remaining lifetime for a

valve free of fatal malfunction at time x after opera-

tion; and the corresponding standard errors.

These functions are estimates of the values that
would have been obtained if the valve removals,
complications, and withdrawals were eliminated as

types of departure from the study.

FREE OF MALFUNCTION
Let E.dr be the number of valves exposed to the
risk of malfunction during the interval x to x+ 1.
Then, after a similar argument to the above with

corresponding assumptions, one can show that
Edr=L,-4(Wx+ Cx)=Exd+
Then the actuarial estimate of the probability of a

malfunction occurring in the interval x to x+ 1 for a
valve alive and functioning at x is q.dr where

drDx+Rxqdr = Ex d

Given qxdr, formulae may be set up, as above,
for Pxdr, the cumulative probability of surviving
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free of a malfunction from o to x; Lx+ d r, the in-
stantaneous malfunction rate at time x+I; mxdr,
the median lifetime remaining for a valve free of a
malfunction at time x after operation; and the cor-
responding standard errors.

FREE OF COMPLICATION
Let Exdrc be the number of valves exposed to the
risk of complication during the interval x to x + 1.
Then, after a similar argument to the above with
corresponding assumptions, one can show that
Exdrc =Lx-jWx =Exdr+ iCx.
Then the actuarial estimate of the probability of a

complication occurring in the interval x to x+ 1 for
a valve alive and functioning at x is qxdrC where

Dx+Rx+Cxddrc=qxdre = Edrc

Given qx d rce formulae may be set up, as above, for
Pxdrc, the cumulative probability of surviving free
of a complication from o to x; [drcx+ ,. the instan-
taneous complication rate at time x+j; mxdrc, the
median remaining lifetime for a valve free of com-
plication at time x after operation, and the corre-
sponding standard errors.

INDIVIDUAL AND CUMULATIVE
EVENT-FREE CURVES
The quality of life may be analysed by the actuarial
method considering not only death but also possible
complications, as described above. Two funda-
mentally different methods have been proposed by
the Oregon University Group: the individual com-
plication-free survival curve (Anderson et al., 1974),
for example pd, pr, pe, and the cumulative compli-
cation-free survival curve (Grunkemeier et al., 1975),
for example pdr, pdrc.
The term 'cumulative' is thus used in two senses.

Firstly it is used to refer to the combining of com-
plications (or, in general, decrements) and secondly
it is used to refer to the combining of successive
years after the operation. This dual use of the same
word is confusing. We suggest a more suitable
nomenclature would be use of the term 'multiple
complication' (and, in general, 'multiple decre-
ment'), for the first purpose, and to use 'cumula-
tive' for the second purpose only. So individual
event-free curves could be described as 'single
decrement'.
The individual event-free calculation (that is

single decrement) analyses only one selected com-
plication and assumes that no other complication
can occur, not even death ofthe patient. Calculating
each individual event-free complication curve (for
example, embolism, endocarditis) will involve the
death being included in the withdrawn category (as

above) and thus contributing a half-year event-free
survival.

Because of this disadvantage, Grunkemeier et al.
proposed the cumulative event-free survival curve
(multiple decrement) which considers death or
complication as a final event, whichever occurs
first. Not only one, but two, three, or all the possible
complications can be analysed in this way. Which-
ever occurs first, death or any of the complications
will count as a final, terminating event, and the rest
of the patients will experience an event-free survival.
The reasonable difference between the two

methods can be well illustrated on the follow-up of
patients, or, as in this case, on valve performance
(see Appendix II). This is based on 140 isolated
aortic valve replacements between 1964 and 1967
at the National Heart Hospital. There was not a
single embolism, 87 per cent of the valves were free
of technical failure, 83 per cent free of infective
disease, and 51 per cent free of degenerative failure
after 13 years.
Not surprisingly, the cumulative event-free

survival curve (multiple decrement) creates another
impression. There are only 33 per cent of the valves
functioning free of complication. In fact, the freeze
drying of the homografts was abandoned well before
actuarial analysis could have come into effect.
Obviously, the conclusion can be drawn that fair,
independent judgement on a valve and on its overall
performance can scarcely be made without con-
sidering the cumulative complication-free survival
curve (multiple decrement).
None the less, the individual event-free curves

(single decrement) can be very useful for the ex-
expression of the composition of complications as
well as their relation to each other. In this way it
becomes easy to show that technical failures cause
an early cessation in valve performance, that in-
fection has not been recorded after the first 10
years, and that degeneration begins later but rises
steadily.

Certainly, in this case the comment would be 33
per cent event-free valve function after 13 years,
with some early technical failure, later a continuing
degeneration as well as some infection causing
malfunction.
The danger of considering individual event-free

curves (single decrement) in assessment of patient
survival or valve performance is increased when
there is no single major risk factor, but the compli-
cations are caused by several lesser ones. The
danger increases in proportion to the number of
complication-groups taken into account. Ten in-
dividual complications each with a 90 per cent
complication-free survival can easily mean that
neither a single patient nor valve survives without
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complication. Thus, the cumulative event-free
survival function (multiple decrement) should be the
primary approach to an actuarial analysis in the
assessment of valve performance.

RELATION BETWEEN SURVIVAL CURVES
If the above arguments had been used to derive
estimates of the probability of the occurrence of a
valve removal qxr or the probability of the occur-
rence of a non-fatal complication involving no
removal qxc, we could construct a free of removal
survival curve p.r and a free of non-fatal complica-
tion survival curve P.e. Then it may be shown that
(Benjamin and Haycocks, 1970): (a) the instan-
taneous probability of a complication occurring is
equal to the sum of the three single decrement in-
stantaneous probabilities, that is

[,drc =[d+[,r+g
and (b) the probability of surviving without a com-
plication is equal to the product of the three single
decrement probabilities of surviving, that is

pdrc=pd pr pc.
Thus the instantaneous probabilities combine

together in an additive way, and the survival curves
combine together in a multiplicative way.

Because of this multiplicative property, it may be
shown that the difference between two survival
curves has a simple interpretation (Grunkemeier
et al., 1975). For example, the difference PXd-P.Pdr
(between the survival curve free of valve-related
deaths and the survival curve free of malfunction)
represents the probability of a patient being alive at
time x but with a valve replaced. However, no in-
formation is provided about the subsequent ex-
perience of such patients with replaced valves.

In actuarial mathematics, functions like pr, pd,
and pc are called single decrement functions, and
those like prd and pred are called multiple decre-
ment functions. Thus, these two factors must be
given separate assessments to achieve unbiased
statistical analysis.
We acknowledge the invaluable help given by
Professor Bernard Benjamin, City University, and
by Mr Donald N. Ross, National Heart Hospital.

Appendix I

A particular feature of the actuarial method is that
the time since operation is divided into intervals of
convenient length. Without loss of generality, we
shall consider the case where the intervals are of
length one year.

If we let x denote the number of years since
operation, and if we consider the year of follow-
up between x and x+ 1, then

let lx be the number of patients alive at the be-
ginning of the interval

let d. be the number of deaths during that interval
let w. be the number of withdrawals during that

interval (i.e. number of patients lost, number
of patients removed, and number of patients
alive at the closing date which intervened
during that interval).

Then l+j =-l.-d.-w.. And a life table may be con-
structed.

Let E. be the effective number of patients exposed
to the risk of dying during that interval.
Then E. is not equivalent to lx, since the with-

drawals, wx, who have not completed the interval of
observation under consideration must not be
credited with having done so. All living patients will
be found surviving an incomplete interval in their
latest year of follow-up except those rare cases
whose anniversary of operation coincides with the
closing date of the study or date of loss or removal.

In order to reach an expression for E. we need to
make some assumptions about the times of with-
drawals for the w. group. We shall assume that the
withdrawn patients in the interval x to x+ 1 are
exposed to the risk of dying on average for half that
interval, so that

Ex =lX-4wX.
Then, the actuarial estimate of the probability

of dying in the interval x to x+ 1 for a patient alive
at x is qx where dx

qx=-Ex
The estimate of the probability of surviving from

x to x+ 1 is px where px =l-q. and the estimate of
the (cumulative) probability of surviving from o to x
is Px where

PX=p0, Pi, P2 . .. px-l and (Po=1)
A graph of P. plotted against x constitutes the

survival curve.
A large sample approximate formula for the

standard error of Px, due to Greenwood (1926), is

SE (Px) =Px En(Endn)

This may be used for constructing confidence
intervals for a particular Px.
Thus, approximate 95 per cent confidence limits

for Px would be
Px± 1-96 SE(Px).

The difference between two independent survival
curves, represented by aPx and bP. (for example,
relating to different valves), may be tested by
considering the difference between the two cumu-
lative survival probabilities.
An approximate statistical test is to compute z

and compare this with tabulated values of the
standard normal distribution, where z is given by

545



546Endre Bodnar, Steven Haberman, and William H. Wain

,j(SE (aP.))2+(SE (bpx))2

Although the time intervals used hitherto have
been annual, unequal intervals cause no problems
and may be preferable for the early period after
operation (Merrell and Shulman, 1955).

Concerning the derivation of Ex above, we have
implicitly assumed that the withdrawals are subject
to the same probability of dying subsequent to the
last date of contact as those with complete follow-up
information. This may be reasonable for those cases

who are still in the study population and will be
available for future study. There is little reason to
believe that this group will differ from those
patients who have been observed for longer periods.
However, this assumption may be dangerous for the
losses and removals, since failure to examine a

patient for any reason may be related to the patient's
health. This assumption will introduce bias into the
estimates qx if the survival experience of the with-
drawals is different from those who do not with-
draw.

If the withdrawals had been excluded completely
from the analysis, this would have involved the more
stringent assumption that their survival experience
from the date of operation was similar to that for
cases with complete follow-up information.
The desirability of minimising the numbers of

withdrawals and hence, inter alia, reducing the
possible bias of the actuarial estimates is widely
recognised.

It is possible to make more sophisticated al-
lowance for the effect of withdrawals on qx, parti-
cularly if the points of withdrawal during an interval
are known exactly. But this is unlikely to be the case

in surgical applications. In addition, the actuarial
approach has the merits of being simple and can be
justified intuitively, if, for example, one assumes

that the dates of withdrawal are evenly distributed
over each interval of follow-up.

In the above derivation, we have also assumed
that there is no time-related trend in the proba-
bility of dying. The various values of qx have been
obtained from patients who entered the study at
different points in time. We have assumed that these
probabilities remain reasonably constant over time;
otherwise the qualities computed have no simple
interpretation.
The survival rate derived in the previous section

is not an estimate of the actual survival rate but of
the net or underlying rate (according to the termi-
nology of Grunkemeier et al. (1975)), that would
have been obtained if withdrawals were eliminated
as a cause of the patient's experience being termi-

nated. In the terminology of actuarial mathematics,
it is an independent single decrement survival rate
(Benjamin and Haycocks, 1970).

INSTANTANEOUS DEATH RATE
The instantaneous death rate is called the 'force of
mortality' in actuarial mathematics and it is a useful
index of the intensity of risk. It provides the proba-
bility of death occurring in a very small time
interval after x, given that the patient has survived
to time x. We shall denote our estimate of the in-
stantaneous probability of dying at age x by L,u.
Assuming that follow-up intervals are of width one
year, the value of the force of mortality at age
x+ x may be estimated by

2qx
ux+i-ILX 2-qx

A large sample approximation to the standard
error of ,u has been derived by Gehan (1969), viz

SE (t.L+ j) _ + . T/1V-2x+
,\/Exqx

A graph of Vx against x shows whether the risk of
death per unit time remains about the same, in-
creases or decreases, or describes a more complex
curve. It draws attention to points of time at which
the risk changes in intensity by effectively focussing
on the gradient of the survival curve.

For intervals of width not equal to one year, the
width, h, explicitly appears in both the above
formulae.

MEDIAN REMAINING LIFETIME
In nearly all papers discussing life table methods
an estimate of the expectations of life or mean life-
time is derived (Irwin, 1947; Kaplan and Meier,
1958; Chiang, 1968). An ambiguity arises in the
determination of this estimate if some patients are
alive at the end of the study. The expectation of life
(which implies an idefinitely long follow-up period)
cannot be calculated unless the study period is, at
least for some patients, sufficiently long to cover
virtually the complete span of life. Otherwise, the
mean lifetime is indeterminate and is often esti-
mated as the mean lifetime limited to N years,
where N is the maximum follow-up period possible
within the study. Since this is not easily interpreted,
an alternative should be found: we suggest the
median remaining lifetime proposed by Gehan
(1969).

Estimating the median remaining lifetime is
simple, descriptive, and possible if P. is less than
0 5 at some point x, that is the study extends to a
point where the probability of survival is less than
0 5. In elementary statistical textbooks, the median
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is recommended for describing distributions skewed
to the right, and so is a natural choice in this
situation. The estimate of the median remaining
lifetime is mo where

Py-W
mY=++

and y is the number of complete years up to the
point where the survival curve reaches 0 5, i.e.
Py > 1 > Py+i.
A large sample approximation to the standard

error of this estimate is given by
1

SE (mo)==2pqy2P ,\8/E o
Similarly, the estimate of the median remaining

lifetime at time x after the operation is m. where

m,-y-x+P y-IPxmx=y-x+-p p -

and y is the number of complete years up to the
point where the survival curves reaches 0, i.e.
Py> Px > Py+±.

Similarly,
PX

SE (mx')==-p2P yq y
'

\E.
For intervals of width not equal to one year, the

width, h, explicitly appears in the above formulae.

ALTERNATIVE APPROACHES TO
ACTUARIAL METHOD

Kaplan and Meier (1958) give a maximum likelihood
estimate of the cumulative survival probability
called the product limit estimate. This estimate re-

quires knowledge of the exact times of all decre-
ments occurring (for example losses and removals).
For large samples, the actuarial method is almost
equivalent to the product limit approach.

Several ways in which the partial experience of
cases withdrawing can be assigned proper interval
credit have been discussed by Littell (1952),
Elveback (1958), and Chiang (1968). These methods

are more exact than the actuarial method but the
latter is conceptually easier, simpler to operate, uses

an essentially intuitive approach, and, under
certain conditions, the differences may become
negligible. For example, Kuzma (1967) compared
the actuarial method with that due to Chiang (1968)
and found that the differences were negligible for
survival rates and their standard errors when the
loss rates were under 40 per cent and the proportion
of patients withdrawn alive was less than 30 per
cent. This emphasises the need for keeping the
numbers withdrawing as small as possible.
Among other statistical techniques used in

survival analysis, Gehan (1965) proposed an ex-
tension of the Wilcoxon non-parametric test for
comparing two sets of survival data. This approach
has been used by Copeland et al. (1977) for com-

paring groups of patients having had a valve re-

placement. In addition, Mantel (1966) has proposed
a x2 procedure for comparing two sets of survival
data in their entirety. But neither of these methods
intrinsically involves the calculation of survival
probabilities nor the plotting of survival curves.

Both these exercises are natural for the analysis of
survival data and the presentation of results. The
actuarial method automatically produces these
measures in the analysis of survival data.

Appendix II
The formulae described in this paper will now be
used on the information from 140 freeze dried
homograft valves over a 13-year follow-up period.
Table 1 is the pooled data on these valves: only
four of the possible complications have been con-
sidered, and some of the valves may have ex-

perienced more than one of the complications.
Table 1 has been used to construct the life tables
2, 3, 4, 5, and 6.

Table 2 is the life table for fatal valve malfunc-
tions. D represents the deaths, L the number
functioning without complication, and W includes
both the valves with non-fatal complications and
those lost or withdrawn during the year.

Table 1 Pooled data on 140 freeze dried homograft aortic valves used for isolated aortic valve replacement and
followed for up to 13 years

Years 1 2 3 4 5 6 7 8 9 10 11 12 13

Valves functioning without complication 140 132 122 113 104 95 82 71 58 45 32 14 4
Valve related death 6 5 5 1 3 6 3 1 3 1 3 0 0
Non-fatal complication 1 3 4 8 4 3 8 6 5 0 0 1 0
Lost/withdrawn 1 2 0 0 2 4 0 6 5 12 15 9 4
Technical failure 4 7 3 3 0 0 0 0 0 0 0 0 0
Infection 2 2 2 1 3 2 1 3 1 0 0 0 0
Degeneration 0 1 1 5 4 4 8 5 3 1 2 1 0
Thromboembolism 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 2 Freeze dried homograft valves. Life table for fatal valve malfunctions

Year D W L E q p P SE P 1f SE

0 1-000
1 6 2 140 139 0 043 0 957 0-957 0-017
2 5 5 132 129-5 0 039 0-961 0-920 0-023 0 044 0-018
3 5 4 122 120 0-041 0 959 0-881 0-027 0040 0018

4 1 8 113 109 0 009 0.991 0-873 0-028 0-042 0 019
0 009 0 0095 3 6 104 101 0 030 0 970 0-848 0-031

6 6 7 95 91-5 0-066 0-934 0-792 0-036 0 030 0-017
7 3 8 82 78 0-036 0-964 0-761 0-038 0-063 0-026
8 1 12 71 65 0-015 0-985 0 750 0 039 0°037 0-022
9 3 10 58 53 0-057 0 943 0-707 0-043 0-015 0-015
10 1 12 45 39 0-026 0-974 0-689 0-044 0 059 0 034
11 3 15 32 24-5 0 122 0-878 0 605 0-052 0-026 0-026
12 0 10 14 9 0-605 0-052 0-130 0-075
13 0 4 4 2 0-605 0-052 ° °°-

D, number of deaths; W, number withdrawn because of non-fatal complications and those lost to follow-up; L, number functioning
without complications; E, the derived entering numbers; q, probability of deaths for a single year; p, probability of survival for a
single year; P, cumulative probability of survival; SE P, standard error of P; t, instantaneous rate of fatal valve malfunctions; SE I,
standard error of tL. ,u is calculated for the half year interval and is represented so in Table and Fig. 2.

For year one:
El=L1-j (W1)

=140-4 (2)
= 139

q,qlEl

6
139

=0 043
p1=1-q1
= 1-0{043
=0 957

P5=pO xplXp2xp3xp4xp5
= 1 000 x 0-957 x 0-961 x 0 959 x 0 991 x 0 970
=0-848

The standard error of P5 is calculated from:

SE|Endn
SE (P5)=P5 Z En (En-dn)

The instantaneous death rate, V., is calculated
from:

2q
2-q

2 x 0-030
=5 2-0-030

0-060
1-970

=0 030
The standard error for 5 is calculated from:

5Ls
SE (05) = u- x 1-i(p5)2

,\E,5q5
0 030

= Viol 030 V1-i (0.030)2
\101030 / oo
=03030 - 4009

\V3030
1

4

6 5 5 1 3
=0-848-+ xxx
-4 139 (139-6) 129-5 (129-5-5) 120 (120-5) 109 (109-1) 101 (101-3)

6 5 5 1 3
=-0848- + ± ~ + -+139-133 129-5-124-5 120-115 1094108 101-98

=0-848 V/0-00032+0-00031+0-00036+0-000085+0-00030
=0-848/V0-00138
=0-031
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0 030
- xV/1-0-0021P741
=0-017 x 0-999887
=0-017

Table 3 is the life table for the multiple decrement
analysis of all valve complications, both fatal and
non-fatal. These complications are represented as
D, and W only represents those valves lost or
withdrawn.

For the first year:
El=L1-j (W)

=140-4 (1)
=139i
D1 7

and q1 = = 9 =0°050
El 1391

2 1

0-15-

0-10-

0-05-

Valve related death a

Valve complication *

1 2 3 4 5 7 9 10 11 12 1'3
Years after operation

and p1=l-q1=1-0-050=0 950
and p5=pOXplXp2Xp3Xp4Xp5

= 1OOx 0950x0*939x O0926x O*920x 0932
=0-708

The standard error for P5 for all malfunctions, the
instantaneous malfunction rate ~., and its standard
error are calculated as for the fatal malfunctions
and all the values are presented in Table 3.
The values for P from Tables 2 and 3 have been

used to construct the actuarial survival curves in
Fig. 1, together with the standard errors for P13.
Similarly, the values for ,u from Tables 2 and 3 have
been used for constructing Fig. 2.

Tables 4, 5, and 6 are the life tables for three types
of valve malfunction, respectively, technical error,
infection, and degeneration. Each type of malfunc-

Fig. 2 Freeze dried homograft valves.
Instantaneous rate of valve related
death or complication.

Table 3 Freeze dried homograft valves. Life table for multiple decrement analysis of all valve complications

Year D W L E q p P SE P [t SE ,u

0 1-000
1 7 1 140 139-5 0 050 0 950 0.950 0-018

2 8 2 132 131 0-061 0 939 0-892 0-026 0-051 0 019

3 9 0 122 122 0 074 0-926 0-826 0-032 0-063 0-022
4 9 0 113 113 0-080 0-920 0-760 0 036 0-077 0-026
5 7 2 104 103 0-068 0-932 0-708 0039 0-083 0-027
6 9 4 95 93 0 097 0 903 0-640 0-041 0 070 0-026
7 11 0 82 82 0 134 0-866 0 554 0 043 0-102 0 034

8 7 6 71 68 0-103 0-897 0-497 0 043 0-144 0 043

9 8 5 58 55-5 0-144 0-856 0-425 0 043 0 109 0-041
10 1 12 45 39 0-026 0974 0-414 0043 0 155 .0055
11 3 15 32 24-5 0-122 0-877 0-364 0 043 0-026 0-026
12 1 9 14 9 5 0-105 0-895 0-325 0 045 0-130 0-075
13 0 4 4 2 0-325 0 045 0 111 0 111

D, all the complications; W, the valves lost to follow-up; L, the number functioning without complication; E, the derived entering
number; q, the probability of any valve complication for a single year; p, the probability of freedom from any valve complication for a

single year; P, the cumulative probability of freedom from any valve complication; SE P, the standard error of P; g, the instantaneous
rate of valve complication; SE tL, the standard error of g. tL calculated to a half year interval and is represented so in Table 3 and Fig. 2.

4,

a

0n
C:

549



Endre Bodnar, Steven Haberman, and William H. Wain

Table 4 Freeze dried homograft valves. Life table for valve malfunctions resulting from technical error only

Year D W L E q p P SE P I SElL

0 1-000
1 4 4 140 138 0-029 0-971 0-971 0-014

0-029 0-014
2 7 3 132 130-5 0 054 0-946 0 919 0-023

0 055 0-021
3 3 6 122 119 0-025 0 975 0-896 0-026

0-025 0-014
4 3 6 113 110 0-027 0 973 0-871 0-029

0-027 0-015
5 0

D, the number of valves with a technical error; W, the number of valves withdrawn because of other complications or lost to follow-up;
L, the number functioning without technical errors; E, the derived entering number; q, the probability of a technical error for a single
year; p, the probability of freedom from a technical error for a single year; P, the cumulative probability of freedom from a technical
error; SE P, the standard error of P; g, the instantaneous rate of technical error; SE g, the standard error of g; g, calculated to the
half year and is represented so in Table 4 and Fig. 4.

lu)

0-o

Fig. 3 Individual complication L
free function curves offreeze ;t
dried homograft valves.
Probabilities offreedom from
thromboembolism, technical
problems, infection, or

degeneration.

Thromboembolism 1001.

Technical
A.A_A 87t.* 2-81l.

* * *-*-*-* Infection
83/1.t 37I.

T Degeneration
Jl541*6-1%

140 132 122 113 104 95 82 71 58 45 32 14 4

1 2 3 4 lb 11 12 13
Year after operation

Table 5 Freeze dried homograft valves. Life table for valve malfunction resulting from infection only

Year D W L E q p P SE P 1± SE I

0 1-000
1 2 6 140 137 0-014 0-985 0-985 0 010

0-014 0 010
2 2 8 132 128 0-016 0-984 0 970 0-014

0-016 0 011
3 2 7 122 118-5 0-017 0-983 0 954 0-018

0-017 0-012
4 1 8 113 109-5 0 009 0.991 0 945 0-020

0 009 0 009
5 3 6 104 101 0 030 0 970 0-917 0-025

0 030 0-017
6 2 1 1 95 89-5 0-022 0-978 0-896 0-028

0-022 0-016
7 1 10 82 77 0-013 0-987 0-885 0-029

0-013 0-013
8 3 10 71 66 0-045 0 954 0-844 0 035

0-046 0-027
9 1 12 58 52 0 019 0-981 0-828 0-037

0-019 0-019
10 0
11 0
12 0
13 0

D, the number of infected valves; W, the number withdrawn because of other malfunctions or lost to follow-up; L, the number of
valves functioning without infection; E, the derived entering number; q, the probability of infection for a single year; p, the probability
of freedom from infection; P, the cumulative probability of freedom from infection; SE P, the standard error of P; I, the instantaneous
rate of infection; SE &&, the standard error of I; IL is calculated to the half year and is represented so in Table 5 and Fig. 4.
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Table 6 Freeze dried homograft valves. Life table for valve malfunction caused by degeneration only

Year D W L E q p P SE P ± SEp,
0 1-000
1 0 8 140 136 0 10 10

0 000 0
2 1 9 132 127-5 0-008 0-992 0-992 0-007

0-008 0-008
3 1 8 122 118 0-008 0-992 0-984 0 011

0-008 0-008
4 5 4 113 111 0 045 0-955 0-939 0-022

0-046 0-021
5 4 5 104 101-5 0 039 0-961 0-902 0-027

0 040 0-020
6 4 9 95 90 5 0 044 0-956 0-863 0-032

0 045 0-023
7 8 3 82 80-5 0 099 0 901 0 777 0 040

0-104 0-037
8 5 8 71 67 0 075 0-925 0-719 0-044

0-078 0 035
9 3 10 58 53 0 057 0 943 0-678 0 047

0 059 0 034
10 1 12 45 39 0-026 0 974 0-661 0-048

0-026 0 026
11 2 16 32 24 0-083 0-917 0-606 0-052

0-087 0-062
12 1 9 14 9 5 0-105 0-895 0-542 0-061

0-111 0-111
13 0 4 4 2 0 100 0-542 0-061

0*000 0

D, the number of valve malfunctions with degeneration; W, the number of valves withdrawn because of other malfunctions or lost to
follow-up; L, the number of valves functioning without degeneration; E, the derived entering number; q, the probability of degeneration
for a single year; p, the probability of freedom from degeneration for a single year; P, the cumulative probability of freedom from
degeneration; SE P, the standard error of P; ,t, the instantaneous rate of degeneration; SE A, the standard error of V.; IL is calculated
to the half year and is represented so in Table 6 and Fig. 4.

tion is entered as D, and the value for W is calcu-
lated from:

W1 =L1-(L2+D1)
that is for year one from Table 4

W,= 140-(132 +4)
= 140-136
=4

E1 =L1-j(W1)
= 140-i(4)
= 138

4
138

=0-029
P,=ll
=0-971

and P and F are calculated as before, with their
respective standard errors, to give all the entries in
Tables 4, 5, and 6.
The values of P from Tables 4, 5, and 6 and for

thromboembolism have been used for constructing
the individual event-free curves in Fig. 3 and the
values of ,u have been used for Fig. 4.
The median remaining lifetime can be calculated

from the data in Table 2 using the formulae.

The median remaining lifetime free of complica-
tion at time 0, min, is calculated from:

PYj
=Y+.Py-Py±

0 554-0500
mo7+ 0554-0 497
=7 947 years

and the standard error is calculated from
1 1

SE (mO)=2 yq x _-

1 1_E v

2 x0 554 x0 134 V1395
=6*735 x 0-085
=0570

The median remaining life time free of complica-
tion at year five, M5, is calculated from

P y-iPx
mx=y-X± Py_Py+I

0-3640-355
m= 11-5+ 0.3640-325

=6-231 years
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* Technical

* Infection

* Degeneration

/
.~~.-...~

1 2 3 4 5 6 7 8
Years after operation

9 10 11 12

Fig. 4 Freeze dried homograft valves.
Instantaneous rate of technical
problems, infection, or degeneration.

and the standard error is calculated from:

SE (mx)= pI x E

0-708 1
SE (in5) =

2-x 0-364 x 0 122 X'104

=797 x0098
=0-782

This Appendix shows how follow-up information
can be used to provide accurate data on an actuarial
basis for the evaluation and comparison of different
cardiac valve replacements.
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